The Primal-dual Method for Approximation Algorithms and Its Application to Network Design Problems

نویسندگان

  • Michel X. Goemans
  • David P. Williamson
  • Albert W. Tucker
چکیده

In the last four decades, combinatorial optimization has been strongly influenced by linear programming. With the mathematical and algorithmic understanding of linear programs came a whole host of ideas and tools that were then applied to combinatorial optimization. Many of these ideas and tools are still in use today, and form the bedrock of our understanding of combinatorial optimization. One of these tools is the primal-dual method. It was proposed by Dantzig, Ford, and Fulkerson [DFF56] as another means of solving linear programs. Ironically, their inspiration came from combinatorial optimization. In the early 1930s, Egerváry [Ege31] proved

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

The primal-dual method for approximation algorithms

In this survey, we give an overview of a technique used to design and analyze algorithms that provide approximate solutions to NP -hard problems in combinatorial optimization. Because of parallels with the primal-dual method commonly used in combinatorial optimization, we call it the primal-dual method for approximation algorithms. We show how this technique can be used to derive approximation ...

متن کامل

The Design of Competitive Online Algorithms via a Primal-Dual Approach

The primal–dual method is a powerful algorithmic technique that has proved to be extremely useful for a wide variety of problems in the area of approximation algorithms for NP-hard problems. The method has its origins in the realm of exact algorithms, e.g., for matching and network flow. In the area of approximation algorithms, the primal–dual method has emerged as an important unifying design ...

متن کامل

New primal-dual algorithms for Steiner tree problems

We present new primal-dual algorithms for several network design problems. The problems considered are the generalized Steiner tree problem (GST), the directed Steiner tree problem (DST), and the set cover problem (SC) which is a subcase of DST. All our problems are NP-hard; so we are interested in approximation algorithms for them. First we give an algorithm for DST which is based on the tradi...

متن کامل

Using Combinatorial and LP-based Methods to Design Approximation Algorithms

Our goal in this proposal is to explore the connection between the local ratio technique and linear programming. We believe that a better understanding of this connection will strengthen and extend the local ratio technique and will enable us to apply the technique to a wide variety of problems. Specifically, we intend to improve the best performance guarantee and/or running time of approximati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995